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Mixing on- and off-field measures for
piodiversity conservation

Teja Tscharntke ® '*, Péter Batary®, and Ingo Grass*®

The continuing biodiversity losses through agricultural expansion and intensifi-  Highlights
cation are dramatic. We argue that a mix of on- and off-field measures is needed,  Agricultureis the main cause of the biodi-
overcoming the false dichotomy of the land sharing-sparing debate. Protected  versity crisis. Recent suggestions to nar-
land is essential for global biodiversity, while spillover between farmed and nat- oW biodversity conservation to land
. . . . . L . . . sparing are misguiding. Intensifying farm-
ural land is key to reducing species extl_nct|0ns. ThI.S is particularly effective in ing does not lead to sparing more
landscapes with small and diversified fields. Focusing only on protected land  biodiversity-rich land, because higher
fails to conserve a wealth of species, which often provide major ecosystem ser-  Vields are amajor incentive to expand
vices such as pest control, pollination, and cultural benefits. On-field measures 29
must minimise yield losses to prevent increased demand for food imports from  piectad reserves are a comerstone of
biodiversity-rich regions, requiring enforcement of high social-ecological land-  giobal biodiversity, whie enhancing spil-

use standards to ensure a good life for all. over between on- and off-field habitats
reduces extinctions and promotes a

Landscape diversification

More natural
habitat

Mixed on-
/ Wildlife-friendly and off-field
practices measures
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Ecologically-Informed Precision Conservation: A framework for increasing
biodiversity in intensively managed agricultural landscapes with minimal
sacrifice in crop production

Michal Knapp * , Tiit Teder *”, Vojtéch Lukas, Martin Strobl?, Jana Knappova ,
Douglas A. Landis “, Ezequiel Gonzalez *°
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ARTICLEINFO ABSTRACT

Keywords: Conservation actions are urgently needed to tackle biodiversity loss in intensively managed agricultural land-

Agri-environmental schemes scapes. Production lands are usually heterogeneous and contain low-yield areas that can be set aside for

Agroecosystems biodiversity conservation without serious yield losses. Here, we introduce Ecologically-Informed Precision

EL:::ZYStem_ services Conservation, a framework that integrates yield mapping and ecological theory to select the best areas to create
sparing

new set-asides while ensuring high crop yields at the farm/landscape level. Long-term yield maps can be

Landscape structure . i h o . . i
generated using globally available satellite data and basic information on field/farm crop vield from farmers.

Non-crop habitat creation

Landscape design Ecological principles are then used to select the subset of areas with the highest potential for biodiversity con-
Precision agriculture servation by prioritising those that increase connectivity, maximise habitat heterogeneity and decrease landscape
Set-aside grain size. The created non-crop habitats can be permanent and thus ensure biodiversity support over time. In

addition, agricultural management efficiency can be enhanced by improving field shapes. The framework pro-
vides the basis for a practical, user-friendly tool that informs all interested stakeholders on how to rationalise
existing agricultural landscapes using already-existing farming systems and available technologies. High cost-
effectiveness from an economic and conservation perspective, along with the creation of heterogeneous non-
crop habitats, make our framework a promising solution to re-design agricultural landscapes.
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55 12 ARTICLE INFO ABSTRACT
= 031 '
§ 021 :)2 Keywords: Establishing semi-natural areas within annual croplands can provide habitat for beneficial organisms and eco-
o 2 Crop yield system services to crops through a spillover effect. However, this approach to increasing landscape complexity
3 0.6 Ecosystem services . may have no effect on crops, or it may promote pests, weeds and other disservices that reduce productivity. An
w014 La“dlscape complexity argument for changing landscape complexity may be more persuasive if it is associated with higher crop yields.
: 3 : : EZ::;T:;’;EH Here, we examine regions that vary in their landscape complexity and, therefore, may also naturally differ in the
20 30 50 80 Canadian prairies potential for ecosystem services, disservices and crop yields. Specifically, we examine crop-growing districts in
the Canadian province of Alberta to test whether the presence of more non-crop land covers has increased crop
Yield yields. Our dataset covered about one-guarter of the seeded area in Canada between 2012 and 2017 consisting of
© 10,069 records representing average field-level yields reported to a crop insurance provider. In total, we ana-
0.4 1 0.4 - lyzed summary data for 250,000 km? of seeded area for seven grain crops. Using a functional regression ap-
= 18 2.0 proach, we found evidence for a plausibly positive association between yield and the non-crop land covers found
2 031 16 0.31 15 within and near fields in four of seven crops. Landscape complexity, therefore, represented a measurable yield
=z 14 ’ benefit for farmers, although the variance in yield explained by the landscape was small. These findings suggest
8 0.2 1.2 0.2 1.0 there may be a low risk of disservices to crops from non-crop land covers in this region. Our study adds support
E 1.0 0.5 at a broad geographic extent for initiatives that restore perennial and other semi-natural vegetation in annual
0.1 & % 0.1 cropping systems and suggests that, in this temperate grassland region, their promotion (e.g., as carbon stores or
T S N P T v T y y as biodiversity refugia) may have no adverse effects for crop production.
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Pomohou nam moderni technologie?

"comment |momeses

Digital agriculture to design sustainable
agricultural systems

The global food system must become more sustainable. Digital agriculture — digital and geospatial technologies to
monitor, assess and manage soil, climatic and genetic resources — illustrates how to meet this challenge soas to
balance the economic, environmental and social dimensions of sustainable food production.

Bruno Basso and John Antle

\fty years ago. many people doubted

the ability of the world to feed itself

While food security remains a challenge
for the peorest people, the global food
system has been so successful in producing
cheap food calories that today three-
times more people in the world are obese
than underweight due to malnutrition’.
The current food system 15 able to dio
this largely because of crop and lvestock
production technologies that produce and
deliver more food calortes to more people
than was previously thought possible. But
agriculture’s contributions to greenhowse gas
emisstons, water pollution and blodiversity
loss show that major agricultural systems
are on largely unsustainable trajectories™.
As Schramsk et al” point out, changing
the way we produce and use energy In
agriculture as well as the rest of the economy
must be an important part of meeting the
sustainability challenge. However, 1t seems
unlikely that a development pathway for a
human population approaching 10 billion
could be achieved with less total energy use.
And since some environmental costs will
e assoclated with increased energy use and
a substantially larger human population,
achleving a more sustainable development
pathway will involve managing trade-offs
1In complex natural and human systems
among economic, environmental and socal
dimenstons of human well-being”. It now
appears likely that moving agriculture
towards a more sustainable development
pathway will depend largely on crop
agriculture, particularly if the sustainable
human diet 1s to be largely based on plant-
based foods. This will imvolve trade-offs
assoclated with the demands such a pathway
will place on land, water and genetic
resources in many parts of the world®.

The best hope for meeting the challenge

of sustainable agricultural development
lies in the ongolng process of Innovation
now taking place using modern genetic
and information technologies to increase
agricultural productivity while balancing

54

economic, environmental and soclal
outcomes assoclated with agriculture and
the feod system. Genetic improvement

15 & necessary but not sufficlent part of
this strategy. as we learned in the Green
Revolution of the twentieth century,
because environmental ouwtcomes depend
on how crop productton 1s managed at the
feld scale as well as its interactions with
ecosystems across the landscape. Much
attention has been paid to the key role that
data acquisition plays in Improving crop
‘management — but Improvements in system
performance will come about only when
agricultural sclence can make effective

use of these "big data’ Improved data and
analytics will need to be incorporated with
agronomic sclence, that 1s, what we call
digital agriculture (DA) — a set of digital

performance 1s the lack of effective
policies to incentivize the iImplementation
of technodogles such as PA i ways that
achieve thelr promise of environmental

rovement. For example, in the US
Midwest, both surface and groundwater
quality continue to be severely impacted
by high levels of agricultural chemical use
and pollution caused by surface runoff and
leaching to groundwater, despite a vartety
of polictes implemented since the 1980s to
reduce soll eroston and runcdf.

A related explanation for the fallure of
DA to deltver on its promises is that, thus
far, algorithm developers for prectsion
management have lacked the data and
computational tools needed to convert
complex geospatial information on soll
and plant status into appropriate crop

and geospatial information technolog]

that integrates sensors, analytics and
automation to monltor, assess and manage
soll, climatic and genetic resources at field
and landscape scales.

So-called preciston agriculture (PAY
began to be implemented in the early 19%0s
ostensibly to Increase profitability and
reduce the environmental impact of crop-
based systems by applying variable inputs
according to spattal variablity of crop
growth” However, there Is litthe evidence as
vet demonstrating widespread economic
and environmental benefits of precision
‘management technology’. Like many
mechanical technologies, the economic
benefits appear to be greatest for larger
farms that can spread thetr fixed costs over
many acres, and that can reduce labour costs

actbons. T and
misuse of data appears to be a consequence.
For example, many farmers wtilize precision
technology to apply more nitrogen (N)
fertilizer to low-yielding portions of rain-
fed fields 1n the hope of ncreasing ytelds,
rather than less N to avodd fertilizer losses
through leaching and runoff of N that crops
cannot use. This tendency 1s compounded
by apparent conflicts between farmers’ goal
to maximize economic returns, and the
objective of input suppliers to maximize
sales of Inputs. Thus, ironically, precision
management tools may result in lower
economlc and environmental sustainability
i not used appropriately.

Recent research suggests that

improvements in DA technology could
transform these trade-offs into the win-win

through automation. Thus, p bl
and adoption in the United States 15 highest
among larger farms, with profitability only
shghtly higher on average among adopters.
and input use only margtnally lower on
average, consistent with the inding of
minimal environmental benefits from PA as
urrenthy tmy ted”. One exp for
the fatlure to achieve more substantial and
widespread improvements in environmental

that were for PA, and
also help re-design agricultural landscapes
fior sustaimability'®. Given the inherent
warlability in climate, soll and topography,
appropriate assessments of yleld variability
to make more informed decislons require at
least several years of data™. New methods
of analysing spatial-temporal data from
satellites or yledd-monttor data from farmer
machinery can produce yleld stability

NATURE SUSTAINABILITY | VOL3 | APRIL 2030 | 254-256 | mwew.natur comytatmustain

Yield stability map
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Fig. 1| DA in agricultural systems. DA can be used to design and implement sustainable agricultural systems at farm and landscape scales.
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Fig. 1. Study area and mean 2008-2018 yields. The extent of the ground truth data from yield monitors used to evaluate alternative yield mapping approaches is
outlined in gray (see also Fig. 2). Mean yields for the larger nine-state study region were generated by applying the preferred SCYM model to Landsat satellite data.



Ke spolupraci musime ziskat predevsim

samotné zemedelce

* Pfedélat jen par procent orné pldy

* \Vylepsit tvary poli (produkcni plochy)
a usnadnit tak jejich obhospodarovani

* Nové mimoprodukcni biotopy vytvorit
na mistech, kde to ma nejvetsi
ekologicky efekt
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Infield optimized route planning in harvesting operations for risk
of soil compaction reduction
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Abstract

Soil compaction is a major problem in arable farming mainly caused by the intensive
traffic of heavy machinery. It affects negatively soil and crop development. Even though
the first wheeling is considered the most damaging, repeated traffic deteriorates further
the soil and subsoil even up to irreversible conditions. Intelligent infield traffic planning
in the form of optimized route planning is one key option to mitigate soil compaction.
Currently, no comprehensive evaluation of the benefits of such methods exists. In this
paper, a harvest logistics optimization system was employed to evaluate the effective-
ness of optimized route planning in reducing iraffic by generating simulated operational
data and comparing it to a set of six recorded fields ranging in size (2-21 ha) and shape.
For the evaluation, simulated and recorded data for each 12 X 12 m grid cell within the
fields were compared by analysing three variables, that is, traffic occurrences, accumu-
lated traffic load and maximum traffic load per grid cell. The resulis showed a reduction
of the total number of traffic occurrences with a field size weighted mean of relative dif-
ferences of 9.8%. A reduction of 5.6% for the accumulated traffic load, and an increase
of 4.0% for the maximum traffic load. Repeated traffic was reduced in four of the six
fields. Even though optimized route planning is not directly intended for traffic reduc-
tion, it can notably contribute to such mitigation efforts and adds an extra element to the
overall farm strategy for soil compaction mitigation.



Zakladni ekologicka pravidla

Improved:

A) Habitat connectivity D) Habitat heterogeneity

Fig. 1. Visualisation of the main ecological principles that can be applied to improve agricultural landscapes for biodiversity. The upper panel shows an original
landscape where the biodiversity value can be enhanced by increasing habitat connectivity (A; adding new set-asides that act like stepping stones) or habitat amount
(B; enlarging existing non-crop habitats), decreasing grain size (C; splitting cultivated fields, creating thereby more edges), or increasing habitat heterogeneity (D;
new habitat types and crops are introduced to the landscape). Modifications made in panels A-D are highlighted in colour. The bottom panel represents an ideal
scenario where all these principles are applied simultaneously.
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Fig. B2. Step-by-step example of landscape rationalisation using the Ecologically-Informed Precision Conservation (EIPC) framework. Panel A
shows the current situation in a focal landscape (aerial photography). Panel F represents optimal solution generated for the focal landscape
using the EIPC framework. Colours (green to brown) in panels B-F indicate yield distribution within the model landscape; darkest green equals
to 140 % and darkest brown equals to 50 % of average yield. Red areas in panel C indicate 25 % of arable land with the lowest yield potential.
See the text in Box 2 for more details on each step of the EIPC framework.
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+ Choose maps to display

+ Basemap options

+ Layer transparency
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Program na podporu aplikovaného vyzkumu
Ministerstva zemédélstvi 2024-2032

Welcome to E-Planner! E-Planner has been developed by UKCEH to help farmers and other land mangers
o UK Centre for identify the most suitable places for different environmental management options via easy to use, interactive
Eot oy SiHyamsigy maps. E-Planner is free to use and covers the majority of agricultural land in GB.

e_ IG n ner The tool uses environmental datasets to produce maps of the relative suitability of land for different
p environmental outcomes. E-Planner currently maps relative suitability for these options:

= -~ W

« Water resource protection (buffer strips and cover crops) fWOOdlang creation
» Woodland creation (planting of trees on-farm)
= Sown winter bird food (wild bird seed margins)

« Flower-rich pollinator habitats (flower margins and grassland
restoration)

» Wet grassland restoration (restoring wet grassland and
floodplain meadows)

Suitability is based on topography, soils, nearby habitats, landscape
features etc. Suitability is then presented as easy to explore ‘heat
maps’ for a chosen area or farm, making it simple to compare the most
suitable option for a given area or to identify the maost suitable location
for a specific option.

E-Planner is intended to support farmer decisions by presenting :
complex environmental data in an easy to interpret way. But it cannot take the place of local knowledge and therefore does not suggest an
‘optimum’ solution. We suggest the following workflow:

Make an assessment

Think about what you want to do. Use precision agriculture data
(e.g. yield maps) or your own knowledge to identify less productive
or difficult to farm areas. Consider options you might choose.
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Jak optimalizovat tvary po

* Pasové obhospodarovani ... radsi dlouhé obdélniky
e Zohlednéni existujici cestni sité (planovani novych pristupovych cest)
e Zohlednéni optimalni vymeéry ptudniho bloku (5 —10 ha ?7??)

= Foto:RenoFarmy



Jak vyuzit mimoprodukcni plochy 7

=\Y

o

Program na podporu aplikovaného vyzkumu

Ministerstva zemédélstvi 2024-2032

* Manipulacni prostor pro techniku

e Zdroj privydélku (napr. bioplynova stanice; jistota dotacniho prijmu)

e ,Odstinéni” konfliktnich lokalit
* Co na to legislativa a dotacni tituly?
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/avazky a indikatory . Zastaveni poklesu
populaci opylovac
(a jejich narust)

Nature Restoration Law
For people, climate, and planet

* Navyseni krajinnych
prvku (lepsi struktura
krajiny)

22 June 2022
#EUGreenDeal

“i

* Index polnich ptaku

(zvraceni trendu)
Over half of global Our global food
GDP depends on 40% of the systems are
nature and the world’s land responsible for
services it provides. More than is degraded. 80% of deforestation, ’ o v
Construction, 75% Costs associated 70% of freshwater o O bS a h u h | | ku V p u d e
agriculture, of global with soil degradation use and are the single
food and health food crops in the EU already greatest cause H h P4 4
sectors all highly depend on \ exceed EUR 50 billion of terrestrial J e O n avyS e n I
depend on it pollinators avyear biodiversity loss
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- Dékujeme vSem, kdo na projektu pracuji
a predevsim tém, kdo jej plati (= vam)

univerzita
v Praze
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