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The need to get the right answers for the right reasons
(Kirchner, 2006)
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Cell i, time t

n Fotran code;

n doxygen documentation;

n regular releases;

n svn, netcdf;

n multiple optimiz. meth.;

n OpenMP, MPI, . . .

www.ufz.de/mhm
mhm-admin@ufz.de



Scale invariance of global “parameters” γ

and SM was observed in the northern part of the basin,
which is predominately covered by crops and grassland. A
relatively weak coupling was, however, noticed in forested
areas such as the Black Forest and the Swabian Jura. These
results are consistent with the recent findings of Kalthoff
et al. [2011] who also reported a correlation coefficient (r2)
of approximately 0.11–0.39 between the observed SM and
LST at few locations near and around the Black Forest.

[40] The results presented above also indicate that the
coupling between LST and SM is stronger in time (!t) than
that in space (!z) as can be observed by comparing the
results shown in Figures 4a and 4b, respectively. This
behavior is due to the fact that both variables exhibit a
strong seasonal cycle over years, thus resulting a high tem-
poral connection between both variables. Other metrics
such as lag autocorrelations of LST and SM also support
this hypothesis. The autocorrelation coefficients of LST
and SM at different lags are also strongly correlated to each
other with a correlation coefficient (r2) of 0.99 for both
HRU and MPR parameterization techniques.

5.3. Sensitivity of Daily Streamflow Simulations to
Modeling Scale

[41] The results obtained with Algorithm 1 for daily
streamflow simulations at four spatial resolutions (2, 4, 8,
16 km) in seven basins (see section 4.1) are presented in
Figure 5. The model performance obtained with the three
parameterization techniques was comparable in the case
that their free parameters were calibrated and evaluated at
all spatial resolutions employed. This case is referred here-
after as the reference case to ease readability. The results
of the model evaluations are summarized as the ensemble
average and range of EQ corresponding to the 20 best simu-
lations carried out for every basin and spatial resolution
during the period from 1980 to 2008 (see sections 3.3 and
4.1). The average EQ values obtained in the reference case
were at least 0.85 across the range of scales, basins, and the
parameterization techniques employed. The efficiency of
MPR and HRU-2 was marginally better than that of HRU-1
(on average, 1%). The results of study, in agreement with
our previous study [Samaniego et al., 2010a], strongly sug-
gest that there exist several levels of spatial discretizations
and model parameterizations that provide equally plausible
simulations of daily streamflow. Comparable model effi-
ciencies obtained regardless of the spatial resolution and
with any parameterization technique support the findings of
previous model intercomparison studies [Reed et al., 2004;
Smith et al., 2012] regarding the efficiency of spatially
aggregated (or lumped) and distributed hydrologic models.
The difference between EQ obtained at the coarsest (16 km)
and the finest scale (2 km) was, on average, less than 2%.
This drop could be attributed to either the lack of subgrid
variability in some hydrological processes (e.g., snow accu-
mulation and melt) or to the coarseness of meteorological
forcing variables (e.g., precipitation) at large scales.

[42] A significant deterioration in model performance
was noticed with HRU when its free parameters were trans-
ferred to scales other than those used during calibration
(Figure 5). The largest drop in modeling efficiency (EQ)
was observed when free HRU parameters calibrated at 16
km scale were used for daily streamflow simulations at
2 km scale in all seven basins. In this case, the EQ values

Figure 5. Sensitivity of model performance based on the
daily streamflow simulations to the transferability of free
parameters across calibration scales. Three parameteriza-
tion techniques (i.e., HRU-1, HRU-2, and MPR) were
implemented in mHM for this purpose. Results are sum-
marized as the mean and the range of the NSE (EQ)
obtained at seven test basins during the modeling period
(1980–2008).
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Transferability: mHM on German basins
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Transferability: mHM on US basins
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Introduction (Rakovec et al., 2016 WRR)

n Large domain hydrological models are used for predicting SM, ET
and other water states and fluxes. They are usually properly
constrained against river discharge (Q);
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Introduction (Rakovec et al., 2016 WRR)

n Large domain hydrological models are used for predicting SM, ET
and other water states and fluxes. They are usually properly
constrained against river discharge (Q);

n Constraining parameters against river
discharge is necessary, but not a sufficient
condition (Rakovec et al., 2016, JHM);

n We aim at scrutinizing appropriate
incorporation of available real-world
information into a hydrological model,
to improve realism of hydrological processes;
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Introduction (Rakovec et al., 2016 WRR)

n Large domain hydrological models are used for predicting SM, ET
and other water states and fluxes. They are usually properly
constrained against river discharge (Q);

n Constraining parameters against river
discharge is necessary, but not a sufficient
condition (Rakovec et al., 2016, JHM);

n We aim at scrutinizing appropriate
incorporation of available real-world
information into a hydrological model,
to improve realism of hydrological processes;

n Two distinct methods of constraining model parameters
(against Q only and Q + TWS anomaly ) are compared.
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Modelling domain and data

11

n Consists of 80 EU basins;

n Wide range of distinct
physiographic and
regional climate
characteristics;

n Area > 10 000 km2;

n First-order data quality
check to eliminate heavily
human influenced basins.

Data:

n Streamflow (Q);

n Total water storage (TWS)
anomaly from GRACE;

n FLUXNET gridded
evapotranspiration (ET).

2 objective functions φ to be minimazed:

n Q only:
φ = 1−KGE(Q);

n Q + TWS anomaly:
φ = RMSE(TWSSA) ∗ (1−KGE(Q)).



Model performance for streamflow (daily)
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Verification of monthly TWS and ET
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n = 6889 evaluations
(83 param sets in 83 basins)



Why we observe improvements for ET? I

15

Reasoning due to parameter values
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Available water content (AWC) values differ

between Q + TWS anomaly and Q only:
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Why we observe improvements for ET? II
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Improvements in model ET are positively affected by increased
dynamic range of soil water from Q only to Q + TWS anomaly.



ET Improvements
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cross-validation



ET Improvements with no deterioration in Q
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cross-validation



Decomposition of discharge into slow and fast
components (model vs. model z-score)
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Choice of objective function to constrain model leads to changes in
partitioning P into runoff components, while maintaining total runoff:
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Scatter of standardized anomalies for daily runoff components
between Q only and Q + TWS anomaly calibration approaches

lumped over 80 basins.



TWS: reduce the bias of the low-flows
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Conclusions (Rakovec et al., 2016 WRR)

n Constraining mHM with the TWS anomaly (GRACE):
→ no significant reduction on streamflow efficiency (Q)
→ significant improvements

� low-flow prediction
� ET estimates

n Choice of the objective function:
→ considerable changes in the partitioning of P into runoff
components
→ maintaining total runoff estimate unaltered

n A cross-validation at independent locations:
→ (Q + TWS anomaly) is superior to (Q only)
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Ongoing work

n Collaboration with Martyn Clark (NCAR): Model intercomparison
over CONUS (mHM, SAC, VIC, Noah-MP): 600 basins

n Multi-basin parameter estimation: European domain using
new/updated 5km resolution

n Improved hydrological forecasting of mHM via particle filtering and

21
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Thank you!

n Rakovec, O., Kumar, R., Attinger, S. and Samaniego, L. (2016): Improving the

realism of hydrologic model functioning through multivariate parameter

estimation. Water Resour. Res. in press, doi:10.1002/2016WR019430.

n Rakovec, O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M., Attinger, S.,

Schäfer, D., Schrön, M., Samaniego, L. (2016): Multiscale and multivariate

evaluation of water fluxes and states over European river basins, J.

Hydrometeorol., 17, 287–307, doi:10.1175/JHM-D-15-0054.1.

http://dx.doi.org/10.1002/2016WR019430
http://dx.doi.org/10.1175/JHM-D-15-0054.1


Data levels in mHM
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n Level-2: 1-25 km
� Meteorological forcings DWD, E-OBS,

WATCH, NLDAS-2, TRIMM, WRF, MME

n Level-1: 1-8 km
� Modeling states and fluxes

n Level-0: 100-1000 m
� DEM BGK, SRTM

� Soil texture, root zone depth BÜK,

WHSD, STATSGO

� Hydraulic conductivity HÜK

� LAI NASA

� Land cover NASA, CORINE

� River network, gauged stations
GRDC-EWA, EURO-FRIEND, USGS

� Radiation, albedo, emissivity,
wind LSA-SAF, NCEP-CFSR, MSG



Standard regionalization scheme
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n Pokhrel et al., 2008

n Kling and Gupta, 2009



Standard regionalization scheme
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How to obtain model
parameters β1 through
regionalization?

Let’s assume porosity,
based on PTF:

β1 =


γ1 + γ2u1 + γ3ρ,

if u2<τ

γ4 + γ5u1 + γ6ρ,

otherwise

γ1−6: global params
u1−2, ρ: soil characters.



Multiscale Parameter Regionalization (MPR)
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Application of the MPR technique
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Provided that:

|NSE(Q, Q̂)1/8−NSE(Q, Q̂)1|< ε
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Kumar et al. 2013a WRR



Scale invariance of global “parameters” γ

and SM was observed in the northern part of the basin,
which is predominately covered by crops and grassland. A
relatively weak coupling was, however, noticed in forested
areas such as the Black Forest and the Swabian Jura. These
results are consistent with the recent findings of Kalthoff
et al. [2011] who also reported a correlation coefficient (r2)
of approximately 0.11–0.39 between the observed SM and
LST at few locations near and around the Black Forest.

[40] The results presented above also indicate that the
coupling between LST and SM is stronger in time (!t) than
that in space (!z) as can be observed by comparing the
results shown in Figures 4a and 4b, respectively. This
behavior is due to the fact that both variables exhibit a
strong seasonal cycle over years, thus resulting a high tem-
poral connection between both variables. Other metrics
such as lag autocorrelations of LST and SM also support
this hypothesis. The autocorrelation coefficients of LST
and SM at different lags are also strongly correlated to each
other with a correlation coefficient (r2) of 0.99 for both
HRU and MPR parameterization techniques.

5.3. Sensitivity of Daily Streamflow Simulations to
Modeling Scale

[41] The results obtained with Algorithm 1 for daily
streamflow simulations at four spatial resolutions (2, 4, 8,
16 km) in seven basins (see section 4.1) are presented in
Figure 5. The model performance obtained with the three
parameterization techniques was comparable in the case
that their free parameters were calibrated and evaluated at
all spatial resolutions employed. This case is referred here-
after as the reference case to ease readability. The results
of the model evaluations are summarized as the ensemble
average and range of EQ corresponding to the 20 best simu-
lations carried out for every basin and spatial resolution
during the period from 1980 to 2008 (see sections 3.3 and
4.1). The average EQ values obtained in the reference case
were at least 0.85 across the range of scales, basins, and the
parameterization techniques employed. The efficiency of
MPR and HRU-2 was marginally better than that of HRU-1
(on average, 1%). The results of study, in agreement with
our previous study [Samaniego et al., 2010a], strongly sug-
gest that there exist several levels of spatial discretizations
and model parameterizations that provide equally plausible
simulations of daily streamflow. Comparable model effi-
ciencies obtained regardless of the spatial resolution and
with any parameterization technique support the findings of
previous model intercomparison studies [Reed et al., 2004;
Smith et al., 2012] regarding the efficiency of spatially
aggregated (or lumped) and distributed hydrologic models.
The difference between EQ obtained at the coarsest (16 km)
and the finest scale (2 km) was, on average, less than 2%.
This drop could be attributed to either the lack of subgrid
variability in some hydrological processes (e.g., snow accu-
mulation and melt) or to the coarseness of meteorological
forcing variables (e.g., precipitation) at large scales.

[42] A significant deterioration in model performance
was noticed with HRU when its free parameters were trans-
ferred to scales other than those used during calibration
(Figure 5). The largest drop in modeling efficiency (EQ)
was observed when free HRU parameters calibrated at 16
km scale were used for daily streamflow simulations at
2 km scale in all seven basins. In this case, the EQ values

Figure 5. Sensitivity of model performance based on the
daily streamflow simulations to the transferability of free
parameters across calibration scales. Three parameteriza-
tion techniques (i.e., HRU-1, HRU-2, and MPR) were
implemented in mHM for this purpose. Results are sum-
marized as the mean and the range of the NSE (EQ)
obtained at seven test basins during the modeling period
(1980–2008).
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and SM was observed in the northern part of the basin,
which is predominately covered by crops and grassland. A
relatively weak coupling was, however, noticed in forested
areas such as the Black Forest and the Swabian Jura. These
results are consistent with the recent findings of Kalthoff
et al. [2011] who also reported a correlation coefficient (r2)
of approximately 0.11–0.39 between the observed SM and
LST at few locations near and around the Black Forest.

[40] The results presented above also indicate that the
coupling between LST and SM is stronger in time (!t) than
that in space (!z) as can be observed by comparing the
results shown in Figures 4a and 4b, respectively. This
behavior is due to the fact that both variables exhibit a
strong seasonal cycle over years, thus resulting a high tem-
poral connection between both variables. Other metrics
such as lag autocorrelations of LST and SM also support
this hypothesis. The autocorrelation coefficients of LST
and SM at different lags are also strongly correlated to each
other with a correlation coefficient (r2) of 0.99 for both
HRU and MPR parameterization techniques.

5.3. Sensitivity of Daily Streamflow Simulations to
Modeling Scale

[41] The results obtained with Algorithm 1 for daily
streamflow simulations at four spatial resolutions (2, 4, 8,
16 km) in seven basins (see section 4.1) are presented in
Figure 5. The model performance obtained with the three
parameterization techniques was comparable in the case
that their free parameters were calibrated and evaluated at
all spatial resolutions employed. This case is referred here-
after as the reference case to ease readability. The results
of the model evaluations are summarized as the ensemble
average and range of EQ corresponding to the 20 best simu-
lations carried out for every basin and spatial resolution
during the period from 1980 to 2008 (see sections 3.3 and
4.1). The average EQ values obtained in the reference case
were at least 0.85 across the range of scales, basins, and the
parameterization techniques employed. The efficiency of
MPR and HRU-2 was marginally better than that of HRU-1
(on average, 1%). The results of study, in agreement with
our previous study [Samaniego et al., 2010a], strongly sug-
gest that there exist several levels of spatial discretizations
and model parameterizations that provide equally plausible
simulations of daily streamflow. Comparable model effi-
ciencies obtained regardless of the spatial resolution and
with any parameterization technique support the findings of
previous model intercomparison studies [Reed et al., 2004;
Smith et al., 2012] regarding the efficiency of spatially
aggregated (or lumped) and distributed hydrologic models.
The difference between EQ obtained at the coarsest (16 km)
and the finest scale (2 km) was, on average, less than 2%.
This drop could be attributed to either the lack of subgrid
variability in some hydrological processes (e.g., snow accu-
mulation and melt) or to the coarseness of meteorological
forcing variables (e.g., precipitation) at large scales.

[42] A significant deterioration in model performance
was noticed with HRU when its free parameters were trans-
ferred to scales other than those used during calibration
(Figure 5). The largest drop in modeling efficiency (EQ)
was observed when free HRU parameters calibrated at 16
km scale were used for daily streamflow simulations at
2 km scale in all seven basins. In this case, the EQ values

Figure 5. Sensitivity of model performance based on the
daily streamflow simulations to the transferability of free
parameters across calibration scales. Three parameteriza-
tion techniques (i.e., HRU-1, HRU-2, and MPR) were
implemented in mHM for this purpose. Results are sum-
marized as the mean and the range of the NSE (EQ)
obtained at seven test basins during the modeling period
(1980–2008).
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Spatial pattern of the ensemble mean NSE (Ez) for selected variables. Baseline
values were obtained by calibrating mHM at 2 km resolution with HRU-2 and

MPR, separately. Simulated values were estimated with parameters obtained at
4, 8, and 16 km. [Kumar et al. 2013a, WRR]


