PUBLICATION on Sensitivity analysis of parameters of ground filtering algorithms

Sensitivity analysis of parameters and contrasting performance of ground filtering algorithms with UAV photogrammetry-based and LiDAR point clouds

 
Most ground filtering algorithms are primarily designed for airborne LiDAR point cloud processing and their successful use in identifying ground points from photogrammetric point clouds remains questionable. We compared six ground filtering algorithms implemented in Metashape, ArcGIS, CloudCompare, LAStools, and PDAL. We used UAV photogrammetry-based (acquired under leaf-off conditions) and airborne LiDAR (leaf-on) point clouds of the same area to: (i) compare accuracy of generated DTMs; (ii) evaluate the effect of vegetation density and terrain slope on filtering accuracy; and (iii) assess which algorithm parameters have the greatest effect on the filtering accuracy. Our results show that the performance of filtering algorithms was affected by the point cloud type, terrain slope and vegetation cover. The results were generally better for LiDAR (RMSE 0.13–0.19 m) than for photogrammetric (RMSE 0.19–0.23 m) point clouds. The behavior in varying vegetation and terrain conditions was consistent for LiDAR point clouds. However, when applied on photogrammetric point clouds, the algorithms’ behavior was inconsistent, especially in areas of steep slope (except for the Progressive Triangulated Irregular Network in LAStools). Parameters related to the selection of the initial minimum elevation ground points were the most influential in all algorithms and point clouds.
 
 

Další články v rubrice

English ☰ Menu
Cookie settings

We use cookies and similar technologies on the websites of the Czech University of Life Sciences Prague (under the domain czu.cz) to ensure the proper functioning of the website. With your consent, we also use them to measure traffic (Google Analytics 4), analyze website performance, and for marketing purposes (Meta, Sklik, Google Ads), including displaying embedded videos (YouTube). Information about how you use our websites may be shared with our partners in the fields of analytics, social media, and online advertising. Essential cookies are always active. You can change or revoke your cookie preferences and consent at any time in "Cookie Settings."